Differential regulation of L-type Ca2+ channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing.

نویسندگان

  • Jun-Hui Xue
  • Li-Fan Zhang
  • Jin Ma
  • Man-Jiang Xie
چکیده

This study was designed to clarify whether simulated microgravity can induce differential changes in the current and protein expression of the L-type Ca(2+) channel (Ca(L)) in cerebral and mesenteric arteries and whether these changes can be prevented by daily short-duration -G(x) exposure. Tail suspension [hindlimb unloading (HU)] for 3 and 28 days was used to simulate short- and medium-term microgravity-induced deconditioning effects. Standing (STD) for 1 h/day was used to provide -G(x) as a countermeasure. Whole cell patch-clamp experiments revealed an increase in current density of Ca(L) of vascular smooth muscle cells (VSMCs) isolated from cerebral arteries of rats subjected to HU and a decrease in VSMCs from mesenteric arteries. Western blot analysis revealed a significant increase and decrease of Ca(L) channel protein expression in cerebral and small mesenteric arterial VSMCs, respectively, only after 28 days of HU. STD for 1 h/day did not prevent the increase of Ca(L) current density in cerebral arterial VSMCs, but it prevented completely (within 3 days) and partially (28 days) the decrease of Ca(L) current density in small mesenteric arterial VSMCs. Consistent with the changes in Ca(L) current, STD for 1 h/day did not prevent the increase of Ca(L) expression in cerebrovascular myocytes but did prevent the reduction of Ca(L) expression in mesenteric arterial VSMCs subjected to 28 days of HU. These data indicate that simulated microgravity up- and downregulates the current and expression of Ca(L) in cerebral and hindquarter VSMCs, respectively. STD for 1 h/day differentially counteracted the changes of Ca(L) function and expression in cerebral and hindquarter arterial VSMCs of HU rats, suggesting the complexity of the underlying mechanisms in the effectiveness of intermittent artificial gravity for prevention of postflight cardiovascular deconditioning, which needs further clarification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential regulation of L-type Ca channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing

Xue J-H, Zhang L-F, Ma J, Xie M-J. Differential regulation of L-type Ca channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing. Am J Physiol Heart Circ Physiol 293: H691–H701, 2007. First published March 9, 2007; doi:10.1152/ajpheart.01229.2006.—This study was designed to clarify whether simulated microgravity can induce differential c...

متن کامل

Differential Regulation and Recovery of Intracellular Ca2+ in Cerebral and Small Mesenteric Arterial Smooth Muscle Cells of Simulated Microgravity Rat

BACKGROUND The differential adaptations of cerebrovasculature and small mesenteric arteries could be one of critical factors in postspaceflight orthostatic intolerance, but the cellular mechanisms remain unknown. We hypothesize that there is a differential regulation of intracellular Ca(2+) determined by the alterations in the functions of plasma membrane Ca(L) channels and ryanodine-sensitive ...

متن کامل

Differential activation of potassium channels in cerebral and hindquarter arteries of rats during simulated microgravity.

The purpose of this study was to test the hypothesis that differential autoregulation of cerebral and hindquarter arteries during simulated microgravity is mediated or modulated by differential activation of K(+) channels in vascular smooth muscle cells (VSMCs) of arteries in different anatomic regions. Sprague-Dawley rats were subjected to 1- and 4-wk tail suspension to simulate the cardiovasc...

متن کامل

Effects of simulated microgravity on arterial nitric oxide synthase and nitrate and nitrite content.

The aim of the present work was to investigate the alterations in nitric oxide synthase (NOS) expression and nitrate and nitrite (NOx) content of different arteries from simulated microgravity rats. Male Wistar rats were randomly assigned to either a control group or simulated microgravity group. For simulating microgravity, animals were subjected to hindlimb unweighting (HU) for 20 days. Diffe...

متن کامل

Role of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit

Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 293 1  شماره 

صفحات  -

تاریخ انتشار 2007